3.282 \(\int \frac{1}{\sqrt [3]{e \sec (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=76 \[ \frac{3 \tan (c+d x) F_1\left (-\frac{1}{3};\frac{1}{2},1;\frac{2}{3};\sec (c+d x),-\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a \sec (c+d x)+a} \sqrt [3]{e \sec (c+d x)}} \]

[Out]

(3*AppellF1[-1/3, 1/2, 1, 2/3, Sec[c + d*x], -Sec[c + d*x]]*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*(e*Sec[c +
 d*x])^(1/3)*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.15897, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {3828, 3827, 130, 510} \[ \frac{3 \tan (c+d x) F_1\left (-\frac{1}{3};\frac{1}{2},1;\frac{2}{3};\sec (c+d x),-\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a \sec (c+d x)+a} \sqrt [3]{e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Sec[c + d*x])^(1/3)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

(3*AppellF1[-1/3, 1/2, 1, 2/3, Sec[c + d*x], -Sec[c + d*x]]*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*(e*Sec[c +
 d*x])^(1/3)*Sqrt[a + a*Sec[c + d*x]])

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3827

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^2*
d*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((d*x)^(n - 1)*(a + b*x)^(m -
 1/2))/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 130

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + (b*x^k)/e)^m*(c + (d*x^k)/e)^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt [3]{e \sec (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx &=\frac{\sqrt{1+\sec (c+d x)} \int \frac{1}{\sqrt [3]{e \sec (c+d x)} \sqrt{1+\sec (c+d x)}} \, dx}{\sqrt{a+a \sec (c+d x)}}\\ &=-\frac{(e \tan (c+d x)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} (e x)^{4/3} (1+x)} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}\\ &=-\frac{(3 \tan (c+d x)) \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{1-\frac{x^3}{e}} \left (1+\frac{x^3}{e}\right )} \, dx,x,\sqrt [3]{e \sec (c+d x)}\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}\\ &=\frac{3 F_1\left (-\frac{1}{3};\frac{1}{2},1;\frac{2}{3};\sec (c+d x),-\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt{1-\sec (c+d x)} \sqrt [3]{e \sec (c+d x)} \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 20.0723, size = 3346, normalized size = 44.03 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((e*Sec[c + d*x])^(1/3)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-(((Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/6)*Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)*((2*AppellF1[3/2, 1/6, 1
/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/6)
+ (3*(1 + (3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/((-1 + Tan[(c + d*x)/2]^2)
*(9*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, T
an[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2
])*Tan[(c + d*x)/2]^2))))/(Sec[(c + d*x)/2]^2)^(1/3)))/(d*(e*Sec[c + d*x])^(1/3)*Sqrt[a*(1 + Sec[c + d*x])]*(-
(Sec[(c + d*x)/2]^2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/6)*Tan[(c + d*x)/2]^2*((2*AppellF1[3/2, 1/6, 1/3, 5/2
, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/6) + (3*(1
 + (3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/((-1 + Tan[(c + d*x)/2]^2)*(9*App
ellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c +
 d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[
(c + d*x)/2]^2))))/(Sec[(c + d*x)/2]^2)^(1/3))) - (Sec[(c + d*x)/2]^2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/6)*
(-1 + Tan[(c + d*x)/2]^2)*((2*AppellF1[3/2, 1/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d
*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/6) + (3*(1 + (3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2
, -Tan[(c + d*x)/2]^2])/((-1 + Tan[(c + d*x)/2]^2)*(9*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c
 + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 7/6,
 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2))))/(Sec[(c + d*x)/2]^2)^(1/3)))/2 - (
Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/6)*Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)*((2*AppellF1[3/2, 1/6, 1/3,
5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(Cos[c + d*x]*Sec[(c + d*x)
/2]^2)^(5/6) + (2*Tan[(c + d*x)/2]^2*(-(AppellF1[5/2, 1/6, 4/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*
Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (AppellF1[5/2, 7/6, 1/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2
]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/10))/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/6) - (5*AppellF1[3/2, 1/6, 1/
3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[
c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(11/6)) - (Tan[(c + d*x)/2
]*(1 + (3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/((-1 + Tan[(c + d*x)/2]^2)*(9
*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[
(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*
Tan[(c + d*x)/2]^2))))/(Sec[(c + d*x)/2]^2)^(1/3) + (3*((-3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -
Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/((-1 + Tan[(c + d*x)/2]^2)^2*(9*AppellF1[1/2, 1/6, 1/
3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(
c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)) +
 (3*(-(AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/
2])/9 + (AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x
)/2])/18))/((-1 + Tan[(c + d*x)/2]^2)*(9*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]
 + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Ta
n[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)) - (3*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2
]^2, -Tan[(c + d*x)/2]^2]*((-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF
1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2] + 9*(-(App
ellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9 + (A
ppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/18)
+ Tan[(c + d*x)/2]^2*(-(AppellF1[5/2, 7/6, 4/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]
^2*Tan[(c + d*x)/2])/5 + (7*AppellF1[5/2, 13/6, 1/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*
x)/2]^2*Tan[(c + d*x)/2])/10 - 2*((-4*AppellF1[5/2, 1/6, 7/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Se
c[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (AppellF1[5/2, 7/6, 4/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*
Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/10))))/((-1 + Tan[(c + d*x)/2]^2)*(9*AppellF1[1/2, 1/6, 1/3, 3/2, Tan[(c
+ d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]
+ AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)^2)))/(Sec[(c + d*
x)/2]^2)^(1/3)) - (Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)*((2*AppellF1[3/2, 1/6, 1/3, 5/2, Tan[(c + d*x)/2
]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2)/(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(5/6) + (3*(1 + (3*AppellF1[1/
2, 1/6, 1/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])/((-1 + Tan[(c + d*x)/2]^2)*(9*AppellF1[1/2, 1/6, 1
/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + (-2*AppellF1[3/2, 1/6, 4/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[
(c + d*x)/2]^2] + AppellF1[3/2, 7/6, 1/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)))
)/(Sec[(c + d*x)/2]^2)^(1/3))*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c +
d*x]*Tan[c + d*x]))/(6*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(5/6)))))

________________________________________________________________________________________

Maple [F]  time = 0.174, size = 0, normalized size = 0. \begin{align*} \int{{\frac{1}{\sqrt [3]{e\sec \left ( dx+c \right ) }}}{\frac{1}{\sqrt{a+a\sec \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

int(1/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sec \left (d x + c\right ) + a} \left (e \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sec(d*x + c) + a)*(e*sec(d*x + c))^(1/3)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \sqrt [3]{e \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))**(1/3)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sec(c + d*x) + 1))*(e*sec(c + d*x))**(1/3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sec \left (d x + c\right ) + a} \left (e \sec \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sec(d*x + c) + a)*(e*sec(d*x + c))^(1/3)), x)